Pulping and biorefining
- General approach and principles
- Extraction-based methods
- Separation of valuable extractives from trees
- Choosing the right solvent – hydrophobic or hydrophilic?
- Stemwood extractives-based products
- Operation modes and procedures in industrial extraction processes
- Exudate gums and latexes
- Hot-water extraction
- Wood extractives – general description
- Factors contributing to the loss of extractives
- Chemical changes in extractives during storage
- Bark extractives – terpenes and terpenoids
- Bark extractives – polyphenols and other minor compounds
- Use of deep eutectic solvents
- Chemical and biochemical conversion
- Thermochemical conversion
- Kraft pulping
- Wood material handling systems
- Pulping process-general approach
- Pulping technologies
- Drying of chemical pulps
- Chemical (market) pulps drying plant applications
- Recovery of cooking chemicals and by-products
- Integrated biorefinery concepts
- Oxygen-alkali delignification
- Delignifying or lignin-removing bleaching
- Other delignification methods
- Chemimechanical pulping
- Mechanical pulping
- Pulp characterisation and properties
Pyrolysis In the slow heat-up of conventional wood pyrolysis (“slow pyrolysis”, typically to 800–900 °C), the most important product is solid charcoal, but volatile products (i.e., gases and tar) are also formed.1-7 In addition to slow pyrolysis with very long residence time, there is “fast pyrolysis”, which produces a high yield of various volatile products
Authors & references
Author:
Raimo Alén, University of Jyväskylä
References:
- Soltes, E. J. and Elder, T. J. 1981. Pyrolysis. In: Goldstein, I. S. (Ed.). Organic Chemicals from Biomass. CRC Press, Boca Raton, FL, USA. Pp. 63−99.
- Shafizadeh, F. 1982. Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 3:283−305.
- Bridgwater, A. V. (Ed.). 2002. Fast Pyrolysis of Biomass: a Handbook, Volume 2. CPL Press, Newbury, England. 426 p.
- Alén, R. 2011. Principles of biorefining. In: Alén, R. (Ed.). Biorefining of Forest Resources. Paper Engineers’ Association, Helsinki, Finland. Pp. 55−114.
- Konttinen, J., Reinikainen, M., Oasmaa, A. and Solantausta, Y. 2011. Thermochemical conversion of forest biomass. In: Alén, R. (Ed.). Biorefining of Forest Resources. Paper Engineers’ Association, Helsinki, Finland. Pp. 262−304.
- Wang, S. and Luo, Z. 2017. Pyrolysis of Biomass. Walter de Gruyter, Berlin, Germany. 268 p.
- Alén, R. 2018. Carbohydrate Chemistry – Fundamentals and Applications. World Scientific, Singapore. Pp. 280−341.
- Bridgwater, A. V., Meier, D. and Radlein, D. 1999. An overview of fast pyrolysis of biomass. Organic Geochemistry 30:1479−1493.
- Bridgwater, A. V. and Peacocke, G. V. V. 2000. Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 4:1−73.
- Bridgwater, A. V., Czernik, S. and Piskorz, J. 2002. The status of biomass fast pyrolysis. In: Bridgwater, A. V. (Ed.). Fast Pyrolysis of Biomass: a Handbook, Volume 2. CPL Press, Newbury, England. Pp. 1−22.
- Arshadi, M. and Sellstedt, A. 2008. Production of energy from biomass. In: Clark, J. H. and Deswarte, F. E. I. (Eds.). John Wiley & Sons, New York, NY, USA. Pp. 143−178.
- Bridgwater, A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38:68−94.
- Alén, R., Kuoppala, E. and Oesch, P. 1996. Formation of the main degradation compound groups from wood and its components during pyrolysis. Journal of Analytical and Applied Pyrolysis 36:137−148.
- Balat, M. 2008. Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energy Sources, Part A 30(7):620−635.
- Demirbas, A. 2009. Pyrolysis mechanisms of biomass materials. Energy Sources, Part A Recovery Utilization and Environmental Effects 31(13):1186−1193.
- Moldoveanu, S. C. 2010. The chemistry of the pyrolytic process. In: Moldoveanu, S. C. (Ed.). Techniques and Instrumentation in Analytical Chemistry, Elsevier, Amsterdam, The Netherlands. Pp. 7−48.
- Van de Velden, M., Baeyens, J., Brems, A., Janssens, B. and Devil, R. 2010. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35(1)232−242.
- Collard, F. X., Blin, J., Bensakhria, A. and Valette, J. 2012. Influence of impregnated metal on the pyrolysis conversion of biomass constituents. Journal of Analytical and Applied Pyrolysis 95:213−226.
- Wang, S., Dai, G., Yang, H. and Luo, Z. 2017. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Progress in Energy and Combustion Science 62:33−86.
- Ghalibaf, M. 2019. Analytical Pyrolysis of Wood and Non-wood Materials from Integrated Biorefinery Concepts. Doctoral Thesis. University of Jyväskylä, Laboratory of Applied Chemistry, Jyväskylä, Finland. 106 p.
- Morf, P., Hasler, P. and Nussbaumer, T. 2002. Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 81(7):843−853.
- Wei, L., Xu, S., Zhang, L., Liu, C., Zhu, H. and Liu, S. 2006. Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Processing Technology 87(10):863−871.
- Hosoya, T., Kawamoto, H. and Saka, S. 2007. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature. Journal of Analytical and Applied Pyrolysis 78(2):328−336.
- Neves, D., Thunman, H., Matos, A., Tarelho, L. and Gomez-Barea, A. 2011. Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science 37(5)611−630.
- Evans, R. J. and Milne, T. A. 1987. Molecular characterization of pyrolysis of biomass. 1. Fundamentals. Energy & Fuels 1(2):123−138.
- Blanco López, M. C., Blanco, C. G., Martínez-Alonso, A. and Tascón, J. M. D. 2002. Composition of gases released during olive stone pyrolysis. Journal of Analytical and Applied Pyrolysis 65(2):313−322.
- Carey, F. A. 2000. Free-radical reactions. In: Carey, F. A. and Sundberg, R. J. (Eds.). Advanced Organic Chemistry, Part A: Structure and Mechanisms. 4th edition. Kluwer Academic/Plenum Publishers, New York, NY, USA. Pp. 663−734.
- Poutsama, M. L. 2000. Fundamental reactions of free radicals relevant to pyrolysis reactions. Journal of Analytical and Applied Pyrolysis 54(1,2):5−35.
- Savage, P. E. 2000. Mechanisms and kinetics models for hydrocarbon pyrolysis. Journal of Analytical and Applied Pyrolysis 54(1,2):109−126.
- Lappi H. 2012. Production of Hydrocarbon-rich Biofuels from Extractives-derived Materials. Doctoral Thesis. University of Jyväskylä, Laboratory of Applied Chemistry, Jyväskylä, Finland. 111 p.
- Dhyani, V. and Bhaskar, T. 2017. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 245:1−22.
- Elder, T. 1991. Pyrolysis of wood. In: Hon, D. N.-S. and Shiraishi, N. (Eds.). Wood and Cellulose Chemistry. Marcel Dekker, New York, NY, USA. Pp. 665−692.
- Alén, R., Rytkönen, S. and McKeough, P. 1995. Journal of Analytical and Applied Pyrolysis 31(C):1−13.
- Chen, W. H. and Kuo, P. C. 2011. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36(11):6451−6460.
- Moriana, R., Zhang, Y., Mischnick, P., Li, J. and Ek, M. 2014. Thermal degradation behavior and kinetic analysis of spuce glucomannan and its methylated deivatives. Carbohydrate Polymers 106(1):60−70.
- Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A. and Lappas, A. A. 2014. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis 105:143−150.
- Alén, R. 2000. Structure and chemical composition of wood. In: Stenius, P. (Ed.). Forest Products Chemistry. Fapet, Helsinki, Finland. Pp. 11−57.
- Patwardhan, P. D., Brown, R. C. and Shanks, B. H. 2011. Product distribution from the fast pyrolysis of hemicellulose. Chemistry and Sustainability, Energy and Materials 4(5):636−643.
- Williams, P. T. and Besler, S. 1993. Thermogravimetric analysis of components of biomass. In: Bridgwater, A. T. (Ed.). Advances in thermochemical biomass conversion. Vol. 2. Pyrolysis. Springer, Dordrecht, The Netherlands. Pp. 771−783.
- Werner, K., Pommer, L. and Broström, M. 2014. Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis 110:130−137.
- Bradbury, A. G. W., Sakai, Y. and Shafizadeh, F. 1979. A kinetic model for pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis 23(11):3271−3280.
- Liu, Q., Wang, S. R., Wang, K. G., Guo, X. J., Luo, Z. Y. and Cen, K. F. 2008. Mechanism of formation and consequents evolution of active cellulose during cellulose pyrolysis. Acta Physico-Chimica Sinica 24(11):1957−1963.
- Di Blasi, C. and Lanzetta, M. 1997. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. Journal of Analytical and Applied Pyrolysis 40,41:287−303.
- Branca, C., Di Blasi, C., Mango, C. and Hrablay, I. 2013. Products and kinetics of glucomannan pyrolysis. Industrial & Engineering Chemistry Research 52(14):5030−5039.
- Cho, J., Chu, S., Dauenhauer, P. J. and Huber, G. W. 2012. Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from Maplewood. Green Chemistry 14(2):428−439.
- Adam, M., Ocone, R., Mohammad, J., Berruti, F. and Briens C. 2013. Kinetic investigations of Kraft lignin pyrolysis. Industrial & Engineering Chemistry Research 52(26):8645−8654.
Videos
Exercises
This page has been updated 06.05.2021