Pulping and biorefining
- General approach and principles
- Extraction-based methods
- Separation of valuable extractives from trees
- Choosing the right solvent – hydrophobic or hydrophilic?
- Stemwood extractives-based products
- Operation modes and procedures in industrial extraction processes
- Exudate gums and latexes
- Hot-water extraction
- Wood extractives – general description
- Factors contributing to the loss of extractives
- Chemical changes in extractives during storage
- Bark extractives – terpenes and terpenoids
- Bark extractives – polyphenols and other minor compounds
- Use of deep eutectic solvents
- Chemical and biochemical conversion
- Thermochemical conversion
- Kraft pulping
- Wood material handling systems
- Pulping process-general approach
- Pulping technologies
- Drying of chemical pulps
- Chemical (market) pulps drying plant applications
- Recovery of cooking chemicals and by-products
- Integrated biorefinery concepts
- Oxygen-alkali delignification
- Delignifying or lignin-removing bleaching
- Other delignification methods
- Chemimechanical pulping
- Mechanical pulping
- Pulp characterisation and properties
Enzymes in pulp bleaching During the past 30 years, enzymes have gained successively increased interest amongst pulp and paper manufacturers. The awareness of consumers’ demands, an awakening environmental consciousness and increasingly strict legislation have forced papermakers towards more environmentally provident approaches during recent decades. Greener alternatives to the traditional “hard” oxidative bleaching chemistries have been
Authors & references
Authors:
Leif Robertsén, Kemira Oyj and Tom Lundin MetGen Oy
References:
- Birikh, K., Heikkilä, M. W., Michine, A., Mialon, A., Grönroos, T., Ihalainen, P., Varho, A., Hämäläinen, A., Suonpää, A. and Rantanen, S.-P. 2017. MetGen: value from wood – enzymatic solutions. In: de Gonzalo, G. and de María, P. D. (Eds.). Biocatalysis: an Industrial Perspective. Chapter 11. https://doi.org/10.1039/9781782629993.
- Bajpai, P. 2004. Biological bleaching of chemical pulps. Critical Reviews in Biotechnology 24(1):1-58.
- Kirk, T. K. and Jeffries, T. W. 1996. Roles for microbial enzymes in pulp and paper processing. In: Jeffries, T. W. and Viikari, L. (Eds.). Enzymes for Pulp and Paper Processing. ACS Symposium Series 655. American Chemical Society, Washington, DC, USA. Pp. 2-14. https://doi.org/10.1021/bk-1996-0655.ch001.
- Bolaski, W. and Gallatin, J. C. 1959. Enzymatic conversion of cellulosic fibers. United States patent US3041246 (A) ― 1962-06-26.
- Comtat, J., Mora, F. and Noé, P. 1984. Process for treating papermaking pulps with an enzyme solution promoting fibrillation and pulps thus treated. European patent FR2557894 (A1).
- Paice, M. G. and Jurasek, L. 1984. Removing hemicellulose from pulps by specific enzymic hydrolysis. Journal of Wood Chemistry and Technology 4(2):187-198.
- Viikari, L., Ranua, M., Kantelinen, A., Sundquist, J. and Linko, M. 1986. Bleaching with enzymes. In: Proceedings of the 3rd International Conference of Biotechnology on Pulp and Paper Industry, Stockholm, Sweden. Pp. 67-69.
- Fuentes, J. L. and Robert, M. 1988. Process for treating papermaking pulps with an enzyme solution promoting fibrillation and pulps thus treated. European patent. FR2557894 (A1).
- Uchimoto, I., Endo, K. and Yamagishi, Y. 1991. Method for modifying broad leaf tree pulp. Japanese patent JPH034672 (B2) ― 1991-01-23.
- Irie, Y.; Matsukura, T. and Hata, K. 1988. Avoiding pitch troubles in pulp manufacture by addition of an acylglycerol lipase. European patent EP0374700 (B1) ― 1994-03-09.
- Kim, T.-J., Ow, S. S.-K. and Eom, T.-J. 1991. Enzymatic deinking method of wastepaper. Proceedings of TAPPI Pulping Conference. TAPPI Press, Atlanta, GA, pp. 1023-1027.
- Call, H. P. 1986. Process for producing cellulose from lignin containing raw materials using an enzyme or microorganism while monitoring and maintaining the redox potential. United States patent US5203964 (A) ― 1993-04-20.
- Harazono, R., Kondo, R. and Sakai, K. 1996. Bleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO4. Applied Environmental Microbiology 62:913-917
- URL https://www.bioinformatics.org/wiki/Bioinformatics, visited in August 2019.
- Nemudryi, A. A., Valetdinova, K. R., Medvedev, S. P. and Zakian, S. M. 2014. TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae 6(3):19-40.
- Viikari, L., Kantelinen, A., Sundquist, J. and Linko, M. 1994. Xylanases in bleaching: from an idea to industry. FEMS Microbiolofy Reviews 13: 335-350.
- Nagar, S., Jain, R. K., Thakur, V. V. and Gupta, V. K. 2013. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. Biotechnology 3:277-285.
- Sindhu, I., Chibber, S., Caplash, N. and Sharma, P. 2006. Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp. Current Microbiology 53:167-172.
- Sharma, P., Goel, R. and Capalash, N. 2007. Bacterial laccases. World Journal of Microbiology and Biotechnology 23:823-832.
- Biely, P. 1985. Microbial xylanolytic systems. Trends in Biotechnology 3:286-290.
- Bajpai P. 2004. Biological bleaching of chemical pulps. Critical Reviews in Biotechnology 24(11):1-58.
- Eriksson, K.-E. L. 1997. Biotechnology in the Pulp and Paper Industry, Springer, Berlin, Germany.
- Viikari, L., Suurnäkki, A., Grönqvist, S., Raaska, L. and Ragauskas, A. 2009. Forest products: biotechnology in pulp and paper processing. In: Schaechter, M. (Ed.). Encyclopedia of Microbiology. 3rd edition. Academic Press, New York, NY, USA. Pp. 80-94.
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816-21. https://doi.org/10.1126/science.1225829.
Videos
Exercises
This page has been updated 06.03.2023