Authors & references
Authors:
Professor Emeritus Kauko Leiviskä, University of Oulu
References:
- Luo,R.C., Yih, C-C., Su, K.L.: 2002. Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions. IEEE Sensors journal, 2(2): 107–119.
- de Assis, A.J., Filho, R.M. 2000. Soft sensors development for on-line bioreactor state estimation. Computers and Chemical Engineering 24: 1099–1103.
- Cheruy, A. 1997. Software sensors in bioprocess engineering. Journal of Biotechnology 52(3): 193–199.
- Kadlec, B., Gabrys, B. and Strandt, S. 2009. Data-driven Soft Sensors in the process industry. Computers & Chemical Engineering, 33(4): 795–814.
- Schmalzel, J., Figueroa, F., Morris, J., Mandayam, S. and Polikar, R. 2005. An Architecture for Intelligent Systems based on Smart Sensors. IEEE Transactions on Instrumentation and Measurement, 54(4): 1612–1616.
- Sun, K, et al. 2014. Soft sensor development with nonlinear variable selection using nonnegative garrote and artificial neural network. Proceedings of the 24th European Symposium in Computer Aided Process Engineering – Escape 24 – Budapest, Hungary.
- Akhoundi, M.A.A. and Valavi, E. 2019. Multi-Sensor Fuzzy Data Fusion Using Sensors with Different Characteristics. The CSI Journal on Computer Science and Engineering 16(2): 44–53.
- Mendes, J., Souza, F., Araújo, R. and Gonçalves, N. 2012. Genetic fuzzy system for data-driven soft sensors design. Applied Soft Computing 12:3237–3245.
- Sasiadek, J.Z.2002. Sensor Fusion. Annual Reviews in Control 26: 203–228.
- Li, C.; Gao, H.; Qiu, J.; Yang, Y.; Qu, X.; Wang, Y.; Bi, Z. 2018. Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors. Sensors 18(8): 2503.
- Gustavsson, R. 2018. Development of soft sensors for monitoring and control of bioprocesses. Linköping University Electronic Press, 55 p.
- Rao, M., Corbin, J. and Wang, Q. 1993. Soft Sensors for Quality Prediction in Batch Chemical Pulping Processes. Proceedings of the 1993 international Symposium on Intelligent Control, Chicago, Illinois, USA.
- Murtovaara, S., Juuso, E. K., Sutinen, R., Leiviskä, K. 1998. Neural Networks Modelling of Pulp Digester. In: Dourado, A. (Ed.): Proceedings of CONTROLO’98, 3rd Portuguese Conference on Automatic Control, APCA, Portugal, pp. 627–630.
- Leiviskä K. 2006. Kappa number prediction with neural networks. Control Systems 2006, Measurement and control – Applications for the operator. Tampere, Finland, June 6–8, 2006, 135–140.
- Leiviskä K.: Elman Network in Kappa Number Prediction. Proceedings, ICONS 2009. The 2nd IFAC Conference, Intelligent Control Systems. Istanbul, Turkey, 6p.
- Leiviskä K., Juuso E. and Isokangas A.: 2001. Intelligent Modelling of Continuous Pulp Cooking. In Leiviskä K., (editor): Industrial Applications of Soft Computing. Paper, Mineral and Metal Processing Industries. Physica-Verlag, Heidelberg, New York, pp. 147–158.
- Dufour, P., Bhartiya, S., Dhurjati, P.S. and Doyle III, F.J. 2006. Neural network-based software sensor: training set design and application to a continuous pulp digester. Control Engineering Practice 13(2): 135–143.
- Rudd, J. 1991. Using a neural network system for advanced process control. Tappi Journal 74(10): 153–159.
- Tang, W. and Shan, W. J. 2012. Application of the Soft-Sensing Technique Based on Neural Network to Pulp Washing Process. Advanced Materials Research 505: 93–100.
- Mathur, A., Andersson, N., Smith, D.B., Onofre, R. and Morgan, G. 2018. Bleach plant optimization utilizing novel measurement technologies complemented with advanced process control. O PAPEL 79(2): 65–72.
- Mori, Y, Watanabe, M. and Yamamoto, T. 2014. A multivariable pulp brightness control of EFC bleaching process by Model Predictive Controller. Japan TAPPI Journal 68(10): 88–99.
- Zhang, X., Li, J., Liu, H. and Zhou, P. 2016. Soft sensors for pulp freeness and outlet consistence estimation. Bioresources 11(2): 3598–3613.
- Karlström, A. and Hill, J. 2018. Control strategies for refiners Part I: Soft sensors for CD-refiner control. Nordic Pulp & Paper Research Journal 33(1).
- Alabi, S.B. 2010. Development and Implementation of an Online Kraft Black Liquor Viscosity Soft Sensor. Doctoral Thesis, University of Canterbury, New Zealand.
- Platon, R., Demirli, K. and Amazouz, M. 2009. Soft Sensor Development for Black Liquor Concentration in the Kraft Pulping Process. Proceedings of Safeprocess 2009 Conference, Barcelona, Spain.
- Allison, B., Halvorson, B. and Pawson, D. 2010. Model predictive control of smelt dissolving tank TTA using FT-NIR liquor composition analyser. 2010 TAPPI/PAPTAC International Chemical Recovery Conference. Williamsburg, VA, USA.
- Figueirêdo, L.S., Costa, A.O.S., and Costa, E.S. jr. 2012. Semi empirical modeling of the stationary state of a real causticizing system in a pulp mill. Latin American Applied Research 42:319–326.
- Tian, Z., Li, S., Wang, Y. and Wang, X. SVM predictive control for calcination zone temperature in lime rotary kiln with improved PSO algorithm. Transactions of the Institute of Measurement and Control 40(10): 3134–3146.
- Robinson, J. and Douglas, R. 2015. Improve Lime Mud Kiln Operation By Controlling Mud Moisture Using an Inside-The-Dryer Moisture Sensor. TAPPI 2015 PEERS Conference, Atlanta, GA, USA.
- Yoo, C.K. and Lee, I-B. 2004. Oxygen Control for Biological Wastewater Treatment Processes Environmental Engineering Science 21(3): 331–340.
- Soares, S., Araujo, R., Sousa, P. and Sousa F. 2015. Design and Application of Soft Sensor Using Ensemble Methods. Expert Systems with Applications 42: 2935.