Professor Emeritus Kauko Leiviskä, University of Oulu
References:
Luo,R.C., Yih, C-C., Su, K.L.: 2002. Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions. IEEE Sensors journal, 2(2): 107–119.
de Assis, A.J., Filho, R.M. 2000. Soft sensors development for on-line bioreactor state estimation. Computers and Chemical Engineering 24: 1099–1103.
Cheruy, A. 1997. Software sensors in bioprocess engineering. Journal of Biotechnology 52(3): 193–199.
Kadlec, B., Gabrys, B. and Strandt, S. 2009. Data-driven Soft Sensors in the process industry. Computers & Chemical Engineering, 33(4): 795–814.
Schmalzel, J., Figueroa, F., Morris, J., Mandayam, S. and Polikar, R. 2005. An Architecture for Intelligent Systems based on Smart Sensors. IEEE Transactions on Instrumentation and Measurement, 54(4): 1612–1616.
Sun, K, et al. 2014. Soft sensor development with nonlinear variable selection using nonnegative garrote and artificial neural network. Proceedings of the 24th European Symposium in Computer Aided Process Engineering – Escape 24 – Budapest, Hungary.
Akhoundi, M.A.A. and Valavi, E. 2019. Multi-Sensor Fuzzy Data Fusion Using Sensors with Different Characteristics. The CSI Journal on Computer Science and Engineering 16(2): 44–53.
Mendes, J., Souza, F., Araújo, R. and Gonçalves, N. 2012. Genetic fuzzy system for data-driven soft sensors design. Applied Soft Computing 12:3237–3245.
Sasiadek, J.Z.2002. Sensor Fusion. Annual Reviews in Control 26: 203–228.
Li, C.; Gao, H.; Qiu, J.; Yang, Y.; Qu, X.; Wang, Y.; Bi, Z. 2018. Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors. Sensors 18(8): 2503.
Gustavsson, R. 2018. Development of soft sensors for monitoring and control of bioprocesses. Linköping University Electronic Press, 55 p.
Rao, M., Corbin, J. and Wang, Q. 1993. Soft Sensors for Quality Prediction in Batch Chemical Pulping Processes. Proceedings of the 1993 international Symposium on Intelligent Control, Chicago, Illinois, USA.
Murtovaara, S., Juuso, E. K., Sutinen, R., Leiviskä, K. 1998. Neural Networks Modelling of Pulp Digester. In: Dourado, A. (Ed.): Proceedings of CONTROLO’98, 3rd Portuguese Conference on Automatic Control, APCA, Portugal, pp. 627–630.
Leiviskä K. 2006. Kappa number prediction with neural networks. Control Systems 2006, Measurement and control – Applications for the operator. Tampere, Finland, June 6–8, 2006, 135–140.
Leiviskä K.: Elman Network in Kappa Number Prediction. Proceedings, ICONS 2009. The 2nd IFAC Conference, Intelligent Control Systems. Istanbul, Turkey, 6p.
Leiviskä K., Juuso E. and Isokangas A.: 2001. Intelligent Modelling of Continuous Pulp Cooking. In Leiviskä K., (editor): Industrial Applications of Soft Computing. Paper, Mineral and Metal Processing Industries. Physica-Verlag, Heidelberg, New York, pp. 147–158.
Dufour, P., Bhartiya, S., Dhurjati, P.S. and Doyle III, F.J. 2006. Neural network-based software sensor: training set design and application to a continuous pulp digester. Control Engineering Practice 13(2): 135–143.
Rudd, J. 1991. Using a neural network system for advanced process control. Tappi Journal 74(10): 153–159.
Tang, W. and Shan, W. J. 2012. Application of the Soft-Sensing Technique Based on Neural Network to Pulp Washing Process. Advanced Materials Research 505: 93–100.
Mathur, A., Andersson, N., Smith, D.B., Onofre, R. and Morgan, G. 2018. Bleach plant optimization utilizing novel measurement technologies complemented with advanced process control. O PAPEL 79(2): 65–72.
Mori, Y, Watanabe, M. and Yamamoto, T. 2014. A multivariable pulp brightness control of EFC bleaching process by Model Predictive Controller. Japan TAPPI Journal 68(10): 88–99.
Zhang, X., Li, J., Liu, H. and Zhou, P. 2016. Soft sensors for pulp freeness and outlet consistence estimation. Bioresources 11(2): 3598–3613.
Karlström, A. and Hill, J. 2018. Control strategies for refiners Part I: Soft sensors for CD-refiner control. Nordic Pulp & Paper Research Journal 33(1).
Alabi, S.B. 2010. Development and Implementation of an Online Kraft Black Liquor Viscosity Soft Sensor. Doctoral Thesis, University of Canterbury, New Zealand.
Platon, R., Demirli, K. and Amazouz, M. 2009. Soft Sensor Development for Black Liquor Concentration in the Kraft Pulping Process. Proceedings of Safeprocess 2009 Conference, Barcelona, Spain.
Allison, B., Halvorson, B. and Pawson, D. 2010. Model predictive control of smelt dissolving tank TTA using FT-NIR liquor composition analyser. 2010 TAPPI/PAPTAC International Chemical Recovery Conference. Williamsburg, VA, USA.
Figueirêdo, L.S., Costa, A.O.S., and Costa, E.S. jr. 2012. Semi empirical modeling of the stationary state of a real causticizing system in a pulp mill. Latin American Applied Research 42:319–326.
Tian, Z., Li, S., Wang, Y. and Wang, X. SVM predictive control for calcination zone temperature in lime rotary kiln with improved PSO algorithm. Transactions of the Institute of Measurement and Control 40(10): 3134–3146.
Robinson, J. and Douglas, R. 2015. Improve Lime Mud Kiln Operation By Controlling Mud Moisture Using an Inside-The-Dryer Moisture Sensor. TAPPI 2015 PEERS Conference, Atlanta, GA, USA.
Yoo, C.K. and Lee, I-B. 2004. Oxygen Control for Biological Wastewater Treatment Processes Environmental Engineering Science 21(3): 331–340.
Soares, S., Araujo, R., Sousa, P. and Sousa F. 2015. Design and Application of Soft Sensor Using Ensemble Methods. Expert Systems with Applications 42: 2935.