Professor Emeritus Kauko Leiviskä, University of Oulu
References:
McCulloch, W. and Pitts, W. 1943. A Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5(4):115–133.
Hebb, D. 1949. The Organization of Behavior. New York: Wiley.
Werbos, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University.
Werbos, P. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10):1550 – 1560.
Rajesh, K. and Ray, A.K. 2006. Artificial neural network for solving paper industry problems: A review. Journal of Scientific & Industrial Research 65(7):565—573.
Haataja, K., Leiviskä, K. and Sutinen R. 1997. Kappa-number estimation with neural networks.1997 IMEKO World Congress Proceedings, Finnish Society of Automation, vol. XA, Tampere, p. 1–5.
Leiviskä, K. 2006. Kappa number prediction with neural networks. Proceedings, Control Systems 2006, June 6–8, Tampere.
Aguiar, H.C. and Filho, R.M. 2001. Neural network and hybrid model: a discussion about different modeling techniques to predict pulping degree with industrial data. Chemical Engineering Science 56(2):565-570
Dayal, B.S., MacGregor, J.F., Taylor, P.A., Kildaw, R. and Marcikic, S. 1994. Application of feedforward neural networks and partial least squares regression for modelling Kappa number in a continuous Kamyr digester. Pulp & Paper Canada 95(1):26-32.
Correia, F.M., d’Angelo, J.V., Almeida, G.M., and Mingoti. S.A. 2018. Predicting Kappa number in a Kraft pulp continuous digester: a comparison of forecasting methods. Brazilian Journal of Chemical Engineering 35(03):1081-1094.
Keski-Säntti, J., Leiviskä, K. and Lampela, K. 1999. Production optimization of the pulp bleach plant – intelligent methods utilization approach. Conference: 6th International Conference on New Available Technologies, The World Pulp and Paper Week, Stockholm, Sweden, Proceedings, pp. 402-408.
Ciesielski, K. and Olejnik, K. 2014. Application of Neural Networks for Estimation of Paper Properties Based on Refined Pulp Properties. Fibres & Textiles in Eastern Europe 2014; 22(5)(107):126-132.
Gornik, M., Novak, G. and Govekar, E. 1997 Modelling coated paper properties: application of neural networks, International Journal of Systems Science 28)9):865-870.
Ribeiro B., Dourado, A. and Costa, E. 1993. Lime Kiln Process Identification and Control: A Neural Network Approach. In: Albrecht R.F., Reeves C.R., Steele N.C. (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna
Ribeiro, B., Dourado, A. and Costa, E. 1995. Lime Kiln Fault Detection and Diagnosis by Neural Networks. ICANNGA’95, International Conference on Artificial Neural Networks and Genetic Algorithms Volume 1.
Järvensivu, M. and Seaworth, B. 1998. Neural Network Models Used for Quality Prediction and Control. IFAC Proceedings Volumes 31(29):179-184.
Juneja, P.K., Ray, A.K. and Mitra, R. 2010. Fuzzy Control and Neural Network Control of Limekiln Process. International Journal of Electronics Engineering 2(2):305 – 306.
Qian, Y and Tessier, P. 1995. Modelling of a woodchip refiner using artificial neural network. Chemical Engineering Technology 18(5):337-342.
Sui, O. S., Sanche, L., Mills, C., Smith, W. and Douglas, T. 1998. Model Based Pulp Quality Control of TMP Refiner, 1998 TAPPI Pulping Conference Proceedings.