Authors & references
Authors:
Professor Emeritus Kauko Leiviskä, University of Oulu
References:
- McCulloch, W. and Pitts, W. 1943. A Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5(4):115–133.
- Hebb, D. 1949. The Organization of Behavior. New York: Wiley.
- Werbos, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University.
- Werbos, P. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 78(10):1550 – 1560.
- Rajesh, K. and Ray, A.K. 2006. Artificial neural network for solving paper industry problems: A review. Journal of Scientific & Industrial Research 65(7):565—573.
- Haataja, K., Leiviskä, K. and Sutinen R. 1997. Kappa-number estimation with neural networks.1997 IMEKO World Congress Proceedings, Finnish Society of Automation, vol. XA, Tampere, p. 1–5.
- Leiviskä, K. 2006. Kappa number prediction with neural networks. Proceedings, Control Systems 2006, June 6–8, Tampere.
- Aguiar, H.C. and Filho, R.M. 2001. Neural network and hybrid model: a discussion about different modeling techniques to predict pulping degree with industrial data. Chemical Engineering Science 56(2):565-570
- Dayal, B.S., MacGregor, J.F., Taylor, P.A., Kildaw, R. and Marcikic, S. 1994. Application of feedforward neural networks and partial least squares regression for modelling Kappa number in a continuous Kamyr digester. Pulp & Paper Canada 95(1):26-32.
- Correia, F.M., d’Angelo, J.V., Almeida, G.M., and Mingoti. S.A. 2018. Predicting Kappa number in a Kraft pulp continuous digester: a comparison of forecasting methods. Brazilian Journal of Chemical Engineering 35(03):1081-1094.
- Keski-Säntti, J., Leiviskä, K. and Lampela, K. 1999. Production optimization of the pulp bleach plant – intelligent methods utilization approach. Conference: 6th International Conference on New Available Technologies, The World Pulp and Paper Week, Stockholm, Sweden, Proceedings, pp. 402-408.
- Ciesielski, K. and Olejnik, K. 2014. Application of Neural Networks for Estimation of Paper Properties Based on Refined Pulp Properties. Fibres & Textiles in Eastern Europe 2014; 22(5)(107):126-132.
- Gornik, M., Novak, G. and Govekar, E. 1997 Modelling coated paper properties: application of neural networks, International Journal of Systems Science 28)9):865-870.
- Ribeiro B., Dourado, A. and Costa, E. 1993. Lime Kiln Process Identification and Control: A Neural Network Approach. In: Albrecht R.F., Reeves C.R., Steele N.C. (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna
- Ribeiro, B., Dourado, A. and Costa, E. 1995. Lime Kiln Fault Detection and Diagnosis by Neural Networks. ICANNGA’95, International Conference on Artificial Neural Networks and Genetic Algorithms Volume 1.
- Järvensivu, M. and Seaworth, B. 1998. Neural Network Models Used for Quality Prediction and Control. IFAC Proceedings Volumes 31(29):179-184.
- Juneja, P.K., Ray, A.K. and Mitra, R. 2010. Fuzzy Control and Neural Network Control of Limekiln Process. International Journal of Electronics Engineering 2(2):305 – 306.
- Qian, Y and Tessier, P. 1995. Modelling of a woodchip refiner using artificial neural network. Chemical Engineering Technology 18(5):337-342.
- Sui, O. S., Sanche, L., Mills, C., Smith, W. and Douglas, T. 1998. Model Based Pulp Quality Control of TMP Refiner, 1998 TAPPI Pulping Conference Proceedings.