Authors & references
Edited by:
Professor Emeritus Kauko Leiviskä, University of Oulu
Based on: Leiviskä, K., Process control in chemical recovery (Chapter 6). In: Leiviskä, K. (ed), Process and Maintenance Management, (Book 14), Papermaking Science and Technology. 2nd edition. Jyväskylä, 2009, Paper Engineer’s Association/Paperi ja Puu Oy. pp. 131–164.
References:
- Ostergaard, J. -J. 1993. Fuzzy control of cement kilns a retrospective summary. In: Zimmermann, H.-J. (ed.): Proceedings of EUFIT’93 – First European Congress on Intelligent Techniques and Soft Computing. Verlag Mainz, Aachen, pp. 552-562.
- Nilsson, L. and Langkjaer, T. F. 1996. High level control of a causticizing process. In: Proceedings of EUFIT’96 – Fourth European Congress on Intelligent Techniques and Soft Computing. Verlag Mainz, Aachen. pp. 1901–1905.
- Haataja, K., Ruotsalainen, J. 1994. Fuzzy Logic in lime kiln control. In: Proceedings, MEPP’94 (Reports on Computer Science & Mathematics, Åbo Akademi, Ser. B, No 17).
- Leiviskä, K., Huttunen, R. Uronen, P. 1988. Expert Systems in the lime kiln control. In: Conference on the Use of Computers in Chemical Engineering (CHEMDATA 88) Proceedings 2, EFCE, Gothenburg, Sweden, June 13–15. pp. 379–383.
- Hagemoen, S.W. 1993. An expert system application for lime kiln automation. Conference Record of 1993 Annual Pulp and Paper Industry Technical Conference, Hyannis, MA, USA.
- Järvensivu, M., Juuso E., Ahava O. 2001. Intelligent control of a rotary kiln fired with producer gas generated from biomass. Engineering Applications of Artificial Intelligence 14:629–653.
- Ribeiro, B., Dourado, A. and Costa, E. 1993. Lime kiln process identification and control: A neural network approach. In: International Conference on Artificial Neural Networks and Genetic Algorithms Proceedings. Springer Verlag, Innsbruck. p. 117.
- Ribeiro, B., Dourado, A. and Costa, E. 1995. Industrial kiln multivariable control: MNN and RBFNN approaches. In: Proceedings of International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA95). Vienna, April 18–21. pp. 408–412.
- Carvalho, B., Costa, N., Ribeiro, B. and Dourado, A. 1997. Lime ball quality inspection using neural network and geometrical based decision criteria. In: Proceedings of the 12th International Conference on Systems Engineering (ICSE’97). Coventry, UK, September 9–11. pp. 97–103.
- Ribeiro, B. 1998. Prediction of the lime availability on an industrial kiln by neural networks. Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. Anchorage, AK, May 4–9. Vol. 3. pp. 1987–1991.
- Charos, G. N., Arkun, Y. and Taylor, R. A. 1991. Recovery – liquor making. Model predictive control of an industrial lime kiln. TAPPI J. 74(2):203–211.
- Zanovello, R. and Budman H. 1999. Model predictive control with soft constraints with application to lime kiln control. Computers and Chemical Engineering 23:791–806.
- Juneja, P.K. and Ray, A.K. 2013. Prediction based Control of Lime Kiln Process in a Paper Mil. Journal of forest products & industries, 2(3):58-62.
- Smith, D.B. and Aggarval, P. 1998. Advanced lime kiln control: operating results from a mill installation. TAPPI Process Control, Electrical and Information Conference, pp. 347-355.