Man-made bio-based fibre products
- Introduction to man-made bio-based fibre products
- Man-made bio-based fibre products and their end-uses
- Textile fibres, processing and end-uses
- Key aspects of the down-stream conversion processes
- Production of bio-based fibres
- Dissolving pulp as a raw material
- Cellulose esters of organic acids
- Production of viscose fibres
- General description of carbamate processes
- Production of lyocell fibres
- Production of Cupro fibres
- Carbon fibres from regenerated cellulose
- Production of Alginate fibres
- Viscose and lyocell machinery developments
- Processing of silkworm and spider silk protein fibres
- Polylactide fibres
- Polyhydroxyalcohols PHA and poly(caprolactone)
- Scientific principles of polymer fibre forming
- Alternative and emerging processes for bio-based synthetic fibers
- Ionic liquid as direct solvents: Ioncell-F method
- Enzymatic activation of cellulose – Biocelsol method
- Cellulose carbamate process
- Direct spinning of cellulose composite fibre yarn
- Cellulose-lignin blend as carbon fibre raw material
- Bio-based polyolefines — emerging processes
- Bio-based polyesters — emerging processes
- Polyamides from ligno-cellulosics as raw materials
- Industrial development with silkworm and spider silk
Conventional dyeing and printing of textiles Pretreatment prior to conventional colouration Before fibres, yarns or fabrics are to be dyed via batch exhaust or continuous pad-fixation methods, or printed by print-dry-steam-wash off-dry or pigment print-dry-cure methods, it is important to remove any natural, added, or acquired impurities from the fibres in order that these impurities
Authors & references
Author:
Pertti Nousiainen
Videos
Exercises
This page has been updated 13.04.2021