Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011;2:71–106. [Online] Available from: http://dx.doi.org/10.4155/BFS.10.81. [Accessed 6th November 2019].
Mikko Mäkelä and Kunio Yoshikawa. Simulating hydrothermal treatment of sludge within a pulp and paper mill. Applied Energy 173 (2016) 177–183. [Online] Available from: http://dx.doi.org/10.1016/j.apenergy.2016.04.017 [Accessed 6th November 2019].
Mäkelä M., Forsberg J., Söderberg C., Larsson S.H., Dahl O., Process water properties from hydrothermal carbonization of chemical sludge from a pulp and board mill. Bioresource Technology 263 (2018) 654–659.
Mäkelä M., Benavente C., Fullana A., Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Applied Energy 155 (2015) 576–584. [Online] Available from: http://dx.doi.org/10.1016/j.apenergy.2015.06.022 [Accessed 6th November 2019].
Wikberg H, Grönberg V, Jermakka J, Kemppainen K, Kleen M, Laine C, et al., Hydrothermal refining of biomass – an overview and future perspectives. Tappi Journal 14 (2015) 195–207.
Zhao P, Shen G, Ge S, Chen Z, Yoshikawa K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy 131 (2014) 345–367. [Online] Available from: http://dx.doi.org/10.1016/j.apenergy.2014.06.038. [Accessed 6th November 2019].
Danso-Boateng, E., Shama, G., Wheatley, A.D., Martin, S.J., Holdich, R.G., Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresource Technology 177 (2015) 318–327.
He, C., Giannis, A., Wang, J.-Y., Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Applied Energy 111 (2013) 257–266.
Danso-Boateng, E., Holdich, R.G., Shama, G., Wheatley, A.D., Sohail, M., Martin, S.J., Kinetics of faecal biomass hydrothermal carbonization for hydrochar production. Applied Energy 111 (2013) 351–357.
Fakkaew, F., Koottatep, T., Polprasert, C., Effects of hydrolysis and carbonization reactions on hydrochar production. Bioresource Technology 192 (2015) 328–334.
Areeprasert, C., Zhao, P., Ma, D., Shen, Y., Yoshikawa, K., Alternative solid fuel production from paper sludge employing hydrothermal treatment. Energy & Fuels 28 (2014) 1198–1206.
Areeprasert, C., Chanyavanich, P., Ma, D., Shen, Y., Prabowo, B., Yoshikawa, K., Combustion characteristics and kinetics study of hydrothermally treated paper sludge by thermogravimetric analysis. Biofuels 5 (2014) 673–685.
Alatalo, S.-M., Repo, E., Mäkilä, E., Salonen, J., Vakkilainen, E., Sillanpää, M., Adsorption behavior of hydrothermally treated municipal sludge & pulp and paper industry sludge. Bioresource Technology 147 (2013) 71–76.
Catalkopru, A.K., Kantarli, I.C., Yanik, J., 2017. Effects of spent liquor recirculation in hydrothermal carbonization. Bioresour. Technol. 226, 89–93.
Wirth, B., Reza, M.T., Continuous anaerobic degradation of liquid condensate from steam-derived hydrothermal carbonization of sewage sludge. ACS Sustainable Chemistry & Engineering 4 (2016) 1673–1678.
Villamil, J.A., Mohedano, A.F., Rodriguez, J.J., de la Rubia, M.A., Valorisation of the liquid fraction from hydrothermal carbonisation of sewage sludge by anaerobic digestion. Journal of Chemical Technoly & Biotechnology 93 (2017) 450–456.
Riedel, G., Koehler, R., Poerschmann, J., Kopinke, F.-D., Weiner, B., Combination of hydrothermal carbonization and wet oxidation of various biomasses. Chemical Engineering Journal 279 (2015) 715–724.
Swedish Energy Agency (2018), press release. [Online] Available from: https://www.energimyndigheten.se/en/news/2018/new-technology-converts-sludge-into-biofuel/ [Accessed 6th November 2019].