Suvi Arola, Senior Scientist, VTT Technical Research Centre of Finland Ltd.
References:
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, (2014).
Pollegioni, L., Tonin, F. & Rosini, E. Lignin-degrading enzymes. FEBS Journal (2015). doi:10.1111/febs.13224
Payne, C. M. et al. Fungal cellulases. Chemical Reviews (2015). doi:10.1021/cr500351c
Cantarel, B. I. et al. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37, (2009).
CAZy database. Available at: http://www.cazy.org/.
Kumar, R., Singh, S. & Singh, O. V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology (2008). doi:10.1007/s10295-008-0327-8
Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 61, 263–289 (2010).
Johansen, K. S. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation. Trends in Plant Science 21, 926–936 (2016).
Hemsworth, G. R., Johnston, E. M., Davies, G. J. & Walton, P. H. Lytic Polysaccharide Monooxygenases in Biomass Conversion. Trends in Biotechnology (2015). doi:10.1016/j.tibtech.2015.09.006
Khare, S. K., Pandey, A. & Larroche, C. Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem. Eng. J. (2015). doi:10.1016/j.bej.2015.02.033
Madadi, M., Tu, Y. & Abbas, A. Recent Status on Enzymatic Saccharification of LignocellulosicBiomass for Bioethanol Production. Electron. J. Biol. 13, 135–143 (2017).
Várnai, A. et al. Carbohydrate-Binding Modules of Fungal Cellulases. Occurrence in Nature, Function, and Relevance in Industrial Biomass Conversion. Adv. Appl. Microbiol. 88, 103–165 (2014).
Tomme, P. & Warren, R. Cellulose-binding domains: classification and properties. ACS Symposium Series, American Chemical Society (1995). doi:10.1021/bk-1995-0618
Lehtiö, J. et al. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc. Natl. Acad. Sci. U. S. A. 100, 484–489 (2003).
Linder, M. & Teeri, T. T. The roles and function of cellulose-binding domains. Journal of Biotechnology 57, 15–28 (1997).
Bernardes, A. et al. Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohydr. Polym. (2019). doi:10.1016/j.carbpol.2019.01.108
Pääkko, M. et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8, 1934–1941 (2007).
Klemm, D. et al. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie – International Edition 50, 5438–5466 (2011).
Granström, M. et al. Highly water repellent aerogels based on cellulose stearoyl esters. Polymer Chemistry 2, 1789 (2011).
Pääkkö, M. et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4, 2492 (2008).
Filson, P. B., Dawson-Andoh, B. E. & Schwegler-Berry, D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11, 1808 (2009).
Fleming, K., Gray, D. G. & Matthews, S. Cellulose crystallites. Chem. – A Eur. J. 7, 1831–1835 (2001).
Arola, S., Malho, J., Laaksonen, P., Lille, M. & Linder, M. B. The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter 9, 1319–1326 (2013).
Duchesne, I. et al. The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8, 103–111 (2001).
Centola, G. & Borruso, D. Influence of Hemicellulose on Beatability of Pulp. Tappi 50, 344–347 (1967).
Iwamoto, S., Abe, K. & Yano, H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9, 1022–1026 (2008).
Wilson, D. B. Cellulases and biofuels. Current Opinion in Biotechnology 20, 295–299 (2009).
Bhat, M. K. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. (2000). doi:10.1016/S0734-9750(00)00041-0
Sharma, A., Tewari, R., Rana, S. S., Soni, R. & Soni, S. K. Cellulases: Classification, Methods of Determination and Industrial Applications. Applied Biochemistry and Biotechnology (2016). doi:10.1007/s12010-016-2070-3
Várnai, A., Huikko, L., Pere, J., Siika-aho, M. & Viikari, L. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour. Technol. 102, 9096–9104 (2011).
Penttilä, P. A. et al. Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour. Technol. (2013). doi:10.1016/j.biortech.2012.11.017
Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 16, 220–227 (2013).
Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011).
Hemsworth, G. R., Henrissat, B., Davies, G. J. & Walton, P. H. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10, 122–126 (2013).
Hakalahti, M. et al. Direct Interfacial Modification of Nanocellulose Films for Thermoresponsive Membrane Templates. ACS Appl. Mater. Interfaces 8, 2923–2927 (2016).
Vuong, T. V., Liu, B., Sandgren, M. & Master, E. R. Microplate-Based Detection of Lytic Polysaccharide Monooxygenase Activity by Fluorescence-Labeling of Insoluble Oxidized Products. Biomacromolecules 18, 610–616 (2017).
Arola, S., Tammelin, T., Setälä, H., Tullila, A. & Linder, M. B. Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules 13, 594–603 (2012).
Villares, A. et al. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci. Rep.7, 40262 (2017).
Levy, I. & Shoseyov, O. Cellulose-binding domains: Biotechnological applications. Biotechnol. Adv. 20, 191–213 (2002).
Varjonen, S. et al. Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins. Soft Matter7, 2402 (2011).
Laaksonen, P. et al. Genetic engineering of biomimetic nanocomposites: Diblock proteins, graphene, and nanofibrillated cellulose. Angew. Chemie – Int. Ed. 50, 8688–8691 (2011).
Malho, J.-M. et al. Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterials. Angew. Chemie – Int. Ed. 54, 12025–12028 (2015).
Levy, I. & Shoseyov, O. Expression, refolding and indirect immobilization of horseradish peroxidase (HRP) to cellulose via a phage-selected peptide and cellulose-binding domain (CBD). J. Pept. Sci.7, 50–57 (2001).
Fang, W. et al. Elastic and pH-Responsive Hybrid Interfaces Created with Engineered Resilin and Nanocellulose. Biomacromolecules (2017). doi:10.1021/acs.biomac.7b00294
Mohammadi, P., Beaune, G., Stokke, B. T., Timonen, J. V. I. & Linder, M. B. Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materials. ACS Macro Lett. (2018). doi:10.1021/acsmacrolett.8b00527
Levy, I., Nussinovitch, A., Shpigel, E. & Shoseyov, O. Recombinant cellulose crosslinking protein: A novel paper-modification biomaterial. Cellulose 9, 91–98 (2002).
Palcic, M. M. Glycosyltransferases as biocatalysts. Current Opinion in Chemical Biology (2011). doi:10.1016/j.cbpa.2010.11.022
Shinohara, N. et al. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide. Sci. Rep.7, 1–10 (2017).
Salmen, L. & Olsson, A.-M. Interaction between hemicelluloses, lignin and cellulose : Structure-property relationships. J. pulp Pap. Sci. 24, 99–103 (1998).