Bio-based nanomaterials
- Introduction – What are bio-based nanomaterials?
- Cellulose nanofibrils (CNF)
- Cellulose nanocrystals (CNC) – general introduction
- Bacterial celluloses
- Nanolignin
- Microcrystalline Cellulose (MCC)
- Market for bio-based nanomaterials
- Safety of bio-based nanomaterials
- Additive manufacturing of bio-based (nano)materials
Biomedical applications Introduction – Suitability of cellulose to biomedical applications Wood materials have been utilised in biomedical applications for a long time. These materials are versatile raw materials for many biomedical applications due to their inherent properties and easy modifiability.1 Wood’s main components are cellulose, hemicellulose, lignin, extractives, and waxes, which all have different functions
Authors & references
Author:
Hannes Orelma, Principal Scientist, VTT Technical research centre of Finland Ltd
References
- D. Klemm, Comprehensive cellulose chemistry. Volume 1, Fundamentals and analytical methods, Wiley-VCH, Weinheim, 1998. http://xxxxx.linneanet.fi/cgi-bin/Pwebrecon.cgi?BBID=240995.
- E. Sjöström, Wood Chemistry: Fundamentals and Applications, Academic Press, San Diego, 1993.
- R. Alen, R. Andersson, G. Annergreen, C.-G. Berg, C. Chirat, J. van Dam, M. Danielsson, A. Engelfeldt, J. Engstrom, U. Germgard, Chemical Pulping Part 1, Fibre Chemistry and Technology, Paper Engineers’ Association/Paperi ja Puu Oy; Helsinki, 2011.
- J.G. Cook, Handbook of Textile Fibres: Man-Made Fibres, Elsevier Science, 1984. https://books.google.fi/books?id=S_aiAgAAQBAJ.
- B. Martina, K. Kateřina, R. Miloslava, G. Jan, M. Ruta, Oxycellulose: Significant characteristics in relation to its pharmaceutical and medical applications, Adv. Polym. Technol. 28 (2009) 199–208. doi:10.1002/adv.20161.
- D. Trache, M.H. Hussin, C.T. Hui Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T.M. Hassan, M.K.M. Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review, Int. J. Biol. Macromol. 93 (2016) 789–804. doi:https://doi.org/10.1016/j.ijbiomac.2016.09.056.
- Okcel. http://www.okcel.eu/.[Accessed 25th May 2020].
- Image from https://miro.medium.com/max/1000/1*Duk6-9Nhw4jJclFsQxwqAQ.png). [Accessed 25th May 2020].
- D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chemie Int. Ed. 50 (2011) 5438–5466. http://dx.doi.org/10.1002/anie.201001273.
- Y.-R. Lou, L. Kanninen, T. Kuisma, J. Niklander, L.A. Noon, D. Burks, A. Urtti, M. Yliperttula, The Use of Nanofibrillar Cellulose Hydrogel As a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells, Stem Cells Dev. 23 (2014) 380–392. doi:10.1089/scd.2013.0314.
- J. Leppiniemi, P. Lahtinen, A. Paajanen, R. Mahlberg, S. Metsä-Kortelainen, T. Pinomaa, H. Pajari, I. Vikholm-Lundin, P. Pursula, V.P. Hytönen, 3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels, ACS Appl. Mater. Interfaces. 9 (2017) 21959–21970. doi:10.1021/acsami.7b02756.
- S.S. Athukoralalage, R. Balu, K.N. Dutta, N. Roy Choudhury, 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review, Polym. 11 (2019). doi:10.3390/polym11050898.
- H. Sehaqui, B. Michen, E. Marty, L. Schaufelberger, T. Zimmermann, Functional Cellulose Nanofiber Filters with Enhanced Flux for the Removal of Humic Acid by Adsorption, ACS Sustain. Chem. Eng. 4 (2016) 4582–4590. doi:10.1021/acssuschemeng.6b00698.
- M. Vuoriluoto, H. Orelma, M. Lundahl, M. Borghei, O.J. Rojas, Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils, Biomacromolecules. 18 (2017) 1803–1813. doi:10.1021/acs.biomac.7b00256.
- L. Fu, J. Zhang, G. Yang, Present status and applications of bacterial cellulose-based materials for skin tissue repair, Carbohydr. Polym. 92 (2013) 1432–1442. http://www.sciencedirect.com/science/article/pii/S0144861712010995.
- A. Bodin, H. Bäckdahl, H. Fink, L. Gustafsson, B. Risberg, P. Gatenholm, Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes, Biotechnol. Bioeng. 97 (2007) 425–434. http://dx.doi.org/10.1002/bit.21314.
- G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm, B. Risberg, In vivo biocompatibility of bacterial cellulose, J. Biomed. Mater. Res. Part A. 76A (2006) 431–438. http://dx.doi.org/10.1002/jbm.a.30570.
- W.K. Czaja, D.J. Young, M. Kawecki, R.M. Brown, The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomacromolecules. 8 (2007) 1–12. http://dx.doi.org/10.1021/bm060620d.
Videos
Exercises
This page has been updated 15.10.2020