Heli Kangas, VTT Technical Research Centre of Finland Ltd.
References:
Saito, T. and Isogai, A. (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983; Saito, T. et al. (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687; Saito, T. et al. (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485; Saito, T. et al. (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10, 1992.
Wågberg, L. et al. (2008). The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir, 784-795; Eyholzer, C., Bordeanu, N., Lopez-Suevos, F., Rentsch, D., Zimmermann, T., Oksman, K. (2009) Preparation and characterization of water-redispersable nanofibrillated cellulose in powder form. Cellulose 17, 19-30; Eyholzer, C., Borges de Couraça, A., Duc, F., Bourban, P.E., Tingaut, P., Zimmermann, T. et al. (2011). Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder replacement of the nuclous pulposus. Biomacromolecules 12, 1419–1427; Siró, I., Plackett, D., Hedenqvist, M., Ankerfors, M., Lindström, T. (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polymer Sci 119, 2652–2660.
Ghanadpour, M., Carosio, F., Larsson, P.T., Wågberg, L. (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16, 3399-3410; Naderi, A., Lindström, T., Weise, C.F., Flodberg, G., Sundström, J., Junel, K. (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nord. Pulp Paper Res. J. 31, 020–029; Noguchi, Y., Homma, I., Matsubara, Y. (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24, 1295–1305.
Aulin, C., Johansson, E., Wågberg, L., Lindström, T. (2010) Self-organised films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11, 872–828; Olszewska, A., Eronen, P., Johansson, L.S., Malho, J.M., Ankerfors, M., Lindström, T., et al. (2011) The behavior of cationic nanofibrillar cellulose in aqueous media. Cellulose 18, 1213–1226.
Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019) Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Sci. 88, 241–264.
Inamochi, T., Funahashi, R., Nakamura, Y., Saito, T., Isogai, A. (2017) Effect of coexisting salt on TEMPO-mediated oxidation of wood cellulose for preparation of nanocellulose. Cellulose 24, 4097–5001.
Sharma, P.R., Joshi, R., Sharma, S.K., Hsiao, B.S. (2017). A simple approach to prepare carboxycellulose nanofibers from untreated biomass. Biomacromolecules 18, 2333–2342.
Aulin, C., Ahola, S., Josefsson, P., Nishino, T., Hirose, Y., Österberg, M. et al. (2009) Nanoscale cellulose films with different crystallinities and mesostructures – their surface properties and interaction with water. Langmuir 25, 7675–7685.
Naderi, A., Erlandsson, J., Sundström, J., Lindström, T. (2016) Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pre-treatment process. Nord Pulp Paper Res J 31, 372–378; Naderi, A., Lindström, T., Erlandsson, J., Sundström, J., Flodberg, G. (2016) A comparative study of the properties of three nano-fibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nord Pulp Paper Res J 31, 364-371; Naderi, A., Lindström, T., Sundström, J. (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21, 1561–1571; Naderi, A., Lindström, T., Sundström, J., Flodberg, G. (2015) Can redispersible low-charged nanofibrillated cellulose be produced by the addition of carboxymethyl cellulose? Nord Pulp Paper Res J 30, 568–577.
Stigsson, V., Kloow, G., Germgård, U. (2006) The influence of the solvent system used during manufacturing of CMC. Cellulose 13, 705–712; Tijsen, C.J., Kolk, H.J., Stamhuis, E.J., Beenackers, A.A.C.M. (2001) An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydr Polym 45, 219–226.
Ho, T.T.T., Zimmermann, T., Hauert, R., Caseri, W. (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18, 1391–1406.
Chaker, A., Boufi, S. (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr Polym 131, 224–232.
Saini, S., Yüsel Falco, Ç., Belgacem, M.N., Bras, J. (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 135, 239–247.
Figure reprinted with permission from Okita et al. (2010). Biomacromolecules 11, 1696–1700. Copyright (2010) American Chemical Society.