Hannes Orelma, Principal Scientist, VTT Technical research centre of Finland Ltd
References
D. Klemm, Comprehensive cellulose chemistry. Volume 1, Fundamentals and analytical methods, Wiley-VCH, Weinheim, 1998. http://xxxxx.linneanet.fi/cgi-bin/Pwebrecon.cgi?BBID=240995.
E. Sjöström, Wood Chemistry: Fundamentals and Applications, Academic Press, San Diego, 1993.
R. Alen, R. Andersson, G. Annergreen, C.-G. Berg, C. Chirat, J. van Dam, M. Danielsson, A. Engelfeldt, J. Engstrom, U. Germgard, Chemical Pulping Part 1, Fibre Chemistry and Technology, Paper Engineers’ Association/Paperi ja Puu Oy; Helsinki, 2011.
B. Martina, K. Kateřina, R. Miloslava, G. Jan, M. Ruta, Oxycellulose: Significant characteristics in relation to its pharmaceutical and medical applications, Adv. Polym. Technol. 28 (2009) 199–208. doi:10.1002/adv.20161.
D. Trache, M.H. Hussin, C.T. Hui Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T.M. Hassan, M.K.M. Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review, Int. J. Biol. Macromol. 93 (2016) 789–804. doi:https://doi.org/10.1016/j.ijbiomac.2016.09.056.
Okcel. http://www.okcel.eu/.[Accessed 25th May 2020].
Image from https://miro.medium.com/max/1000/1*Duk6-9Nhw4jJclFsQxwqAQ.png). [Accessed 25th May 2020].
D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: A New Family of Nature-Based Materials, Angew. Chemie Int. Ed. 50 (2011) 5438–5466. http://dx.doi.org/10.1002/anie.201001273.
Y.-R. Lou, L. Kanninen, T. Kuisma, J. Niklander, L.A. Noon, D. Burks, A. Urtti, M. Yliperttula, The Use of Nanofibrillar Cellulose Hydrogel As a Flexible Three-Dimensional Model to Culture Human Pluripotent Stem Cells, Stem Cells Dev. 23 (2014) 380–392. doi:10.1089/scd.2013.0314.
J. Leppiniemi, P. Lahtinen, A. Paajanen, R. Mahlberg, S. Metsä-Kortelainen, T. Pinomaa, H. Pajari, I. Vikholm-Lundin, P. Pursula, V.P. Hytönen, 3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels, ACS Appl. Mater. Interfaces. 9 (2017) 21959–21970. doi:10.1021/acsami.7b02756.
S.S. Athukoralalage, R. Balu, K.N. Dutta, N. Roy Choudhury, 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review, Polym. 11 (2019). doi:10.3390/polym11050898.
H. Sehaqui, B. Michen, E. Marty, L. Schaufelberger, T. Zimmermann, Functional Cellulose Nanofiber Filters with Enhanced Flux for the Removal of Humic Acid by Adsorption, ACS Sustain. Chem. Eng. 4 (2016) 4582–4590. doi:10.1021/acssuschemeng.6b00698.
M. Vuoriluoto, H. Orelma, M. Lundahl, M. Borghei, O.J. Rojas, Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils, Biomacromolecules. 18 (2017) 1803–1813. doi:10.1021/acs.biomac.7b00256.
L. Fu, J. Zhang, G. Yang, Present status and applications of bacterial cellulose-based materials for skin tissue repair, Carbohydr. Polym. 92 (2013) 1432–1442. http://www.sciencedirect.com/science/article/pii/S0144861712010995.
A. Bodin, H. Bäckdahl, H. Fink, L. Gustafsson, B. Risberg, P. Gatenholm, Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes, Biotechnol. Bioeng. 97 (2007) 425–434. http://dx.doi.org/10.1002/bit.21314.
G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm, B. Risberg, In vivo biocompatibility of bacterial cellulose, J. Biomed. Mater. Res. Part A. 76A (2006) 431–438. http://dx.doi.org/10.1002/jbm.a.30570.
W.K. Czaja, D.J. Young, M. Kawecki, R.M. Brown, The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomacromolecules. 8 (2007) 1–12. http://dx.doi.org/10.1021/bm060620d.