Eero Kontturi, Associate Professor, Aalto University
References:
Nishiyama, Y.; Kim, U. J.; Kim, D. Y.; Katsumata, K. S.; May, R. P.; Langan, P., Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 2003, 4, (4), 1013–7.
Davidson, G. F., 9—THE RATE OF CHANGE IN THE PROPERTIES OF COTTON CELLULOSE UNDER THE PROLONGED ACTION OF ACIDS. Journal of the Textile Institute Transactions 1943, 34, (10), T87–T96.
Rånby, B. G., Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discussions of the Faraday Society 1951, 11, (0), 158–164.
Revol, J. F.; Bradford, H.; Giasson, J.; Marchessault, R. H.; Gray, D. G., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 1992, 14, (3), 170–172.
Beck-Candanedo, S.; Roman, M.; Gray, D. G., Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6, (2), 1048–1054.
Niinivaara, E.; Faustini, M.; Tammelin, T.; Kontturi, E., Mimicking the Humidity Response of the Plant Cell Wall by Using Two-Dimensional Systems: The Critical Role of Amorphous and Crystalline Polysaccharides. Langmuir 2016, 32, (8), 2032–2040.
Habibi, Y.; Goffin, A.-L.; Schiltz, N.; Duquesne, E.; Dubois, P.; Dufresne, A., Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 2008, 18, (41), 5002–5010.
Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2008, 9, (1), 57–65.
Hirai, A.; Inui, O.; Horii, F.; Tsuji, M., Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment. Langmuir 2009, 25, (1), 497–502.
Bouchard, J.; Méthot, M.; Fraschini, C.; Beck, S., Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 2016, 23, (6), 3555–3567.
Labet, M.; Thielemans, W., Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 2011, 18, (3), 607–617.
Dong, X. M.; Revol, J.-F.; Gray, D. G., Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 1998, 5, (1), 19–32.
De France, K. J.; Hoare, T.; Cranston, E. D., Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, (11), 4609–4631.
Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Hyun Park, J.; Scalia, G.; Bergström, L., Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. Npg Asia Materials 2014, 6, e80.
Conley, K.; Godbout, L.; Whitehead, M. A.; van de Ven, T. G. M., Origin of the twist of cellulosic materials. Carbohydr. Polym. 2016, 135, 285–299.
Fleming, K.; Gray, D. G.; Matthews, S., Cellulose Crystallites. Chemistry – A European Journal 2001, 7, (9), 1831–1836.